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A closed matrix form solution of the Bloch-Torrey equation is
presented for the magnetization density of spins diffusing in a
bounded region under a steady gradient field and for the Stejskal—-
Tanner gradient pulse sequence, assuming straightforward gener-
alization to any step-wise gradient profile. The solution is ex-
pressed in terms of the eigenmodes of the diffusion propagator in
a given geometry with appropriate boundary conditions (perfectly
reflecting or relaxing walls). Applications to rectangular, cylindri-
cal, and spherical geometries are discussed. The relationship with
the multiple propagator approach is established and an alternative
step-wise gradient discretization procedure is suggested to handle
arbitrary gradient waveforms. © 1999 Academic Press

Key Words: pulsed-gradient spin-echo NMR; Bloch-Torrey
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INTRODUCTION

phase-inverting RF pulses which can be mimicked by switck
ing over the sign of the gradient. The signal is proportional tc
the total magnetization,

M(t) = J drm(r, t). [2]

Equation [1] is derived in a usual way from the quantumr
evolution equation through the introduction of a stochasti
term and conversion to the interaction representation.

Linearity of the gradient makes it possible to solve Eq. [1] in
the continuum. For isotropic unrestricted diffusidB( 29,

2

M(t) = exp —Dg? Jt dt’Ut dt”f(t”)) ,

[3]

Pulsed-gradient spin-echo NMR is a powerful method for
studying molecular diffusion1&-4). In restricted geometries,
the observable echo attenuation contains structural informatiyhere we have used the condition of complete spin rephasin
about the confinement of the diffusing particles. By extractinfp dt'f(t") = 0, realized in a typical experiment. We have alsc
this information from a suitably designed experiment one hassumed that the signal is normalized, iM(0) = 1. In the
been able to characterize various sophisticated morphologiegjority of the gradient NMR applications, one deals eithe
such as colloids5-7), porous materials3(-17), and biological with a steady gradientfss(t) = 1, or with a two-pulse
tissues {8-21). Stejskal-Tanner gradient profil@3),

Spin-echo phenomenology is well understotéd 4. Theo-
retically, the problem reduces to the solution of the so-called
Bloch—-Torrey equation2?) for the transverse magnetization
density m(r, t) in a linear gradient field with appropriate
boundary and initial conditions,

fsi(t) = —6(t) + 0(t - 5)

+0(t—A)—0(t—A-39), [4]

where 6 (t) is the Heaviside step function. Other pulse se:
guences are also used to satisfy particular purposes but t
above two are the most common and, importantly, they captul
all the essential features of the gradient NMR experiment. Fc

. e - ) the normalized signal in these cases, we have
whereD is the diffusion coefficientg is the product of the

gyromagnetic ratio and the gradient strendth) is the effec-
tive temporal shape function of the gradient, which is taken to
be in thex direction. Exponential relaxation is factored out.
The generalized gradient wavefoffift) includes the effect of

%m(r, t) = —igf(t)xm(r, t) + DV2m(r, t), [1]

Msg(t) = exp(—Dg?t%/3),
Msr(A, 8) = exd —Dg?63%(A — 8/3)].

(5]
(€]

No exact solution of Eq. [1] with an arbitrary gradient
waveformf(t) is available for restricted diffusion, even in one
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dimension. However, the problem is easily handled in the Diffusion during the gradient pulses introduces considerabl
two-pulse scheme within the short gradient pulse lingit complications into analytical study. Several approximation:
», 8 — 0, whileg = gé remains finite). The echo signal isare available. One is termed the Gaussian phase approximati
then related to the Green'’s functi@{r, r’, t) of the diffusion in the NMR literature, which is otherwise known as the trun-
operator as follows25), cated cumulant expansion. This approximation prevailed unt
recently @7, 38, 41-4y. The cumulant expansion result for
the echo signal is

MsHA, q) = J drdr'm(r, 0)e'*""G(r, r', A), [7]

1 t t
M(t) = ex —Zng dt’ J dt"f(t") fE") Kt —t") |,
wherem(r, 0) is the initial distribution, typically equilibrium, o o
m(r, 0) = p(r), and the vectoq is directed along the gradient.

G(r, r’, t) satisfies the equation [10]
where the correlator is defined as
d
(at_ DV2>G(r, r',t) =8 —r’)s(t), [8]
K(t) :j drdr’xx' p(r)G(r, r’, t). [11]
and the boundary condition,
Dn-VG + HG = 0, [9 Based on the assumption of the Gaussian phase distribution,

in the case of free diffusion, the cumulant expansion has a ve
narrow range of applicability limited to short times in the
steady gradient experiment and to smalin the Stejskal—
t‘qunner experiment. This is where the spins start to “feel” th
ematically special, since only in this caseGér, r’, t) con- walls.. The cumulant expansion falls_to predict oscnlat!ons 0
' o the signal at high gradient strengths in the steady gradient ca

servative ancG(r_, r', =) = p(r). T_he narrow-pl_JIse APPTOX” 2nd it does not exhibit any diffraction-like minima for the
imation expressions for the echo signal are available for all tEe

basic geometries (rectangular, cylindrical, and spherical), wi Wgﬁglltfgv?;ddlelzttar?li?é"ﬁ::\?/ﬁ?t.roduced the memorv-functio
both reflecting and relaxing walld44, 16, 2632 It has been Y

. . . approximation on the basis of the application of the projectiol

possible to analyze even more complicated geometti@sas : .
) : gperator method to the evolution equation of the system del
well as to study the exchange of material between dlffel’eélﬁ)y matrix G9). Their main result
confinements 4—11, 13 and with the surrounding medium ' '
(33, 39. A characteristic feature of the short-gradient-pulse
experiment is the so-called “diffusive diffraction”—coherence )
phenomena directly attributable to the underlying struct8ye ( M() + g*(t) f dt'f(t") Kt —t)M(t") =0, [12]
With modern development in NMR hardware, it has indeed 0

become possible to produce short gradient pulses of high
intensity during which the motion due to diffusion is negligiis derived perturbatively, assuming the gradient to be sma
ble. However, the validity of the narrow-pulse approximatioand, as a consequence, it does not reproduce the proper narr
remains one of the central concerns of the gradient NMBulse limit. However, qualitatively this technique predicts botf
community @7, 28, 32, 35—40 Practically, the narrow-pulse the oscillations and the diffraction effects. The memory-func
limit is not always realizable. The need to ensure that thien results have an appealing simplicity and are certainl
displacement is small during the pulses constrains the distamseful in their range of applicability (smal)). The cumulant
scales which can be probed using this experiment. Numericasults can be derived from the memory-function results in th
simulations have shown that finite pulse widths may, if ndlarkovian approximation, i.e., by removirig(t') from the
completely destroy the coherence, at least considerably smiaéegral in Eq. [12].
and shift the diffraction peak{, 28, 35, 3k Since there are  An alternative and very successful multiple propagator ar
always other complications in real systems which may caugeach has been developed by Caprihan, Wang, and Fuk
similar effects, such as the size and shape polydispersity of gféma 32). The method is based on the representation of th
confinements, surface relaxation, etc., one has to understgederal gradient waveform by a succession of sharp impuls
the role of finite pulse widths in a controllable and simple wayvith an appropriate propagator for each stage of the evolutiol
Furthermore, there are certain applications where the gradiéfthough the idea is clear and simple, the final expressions a
is constant, as in stray field experiments. cumbersome and computationally quite intensive. Callaghs

at the interface of the confinement, wheres the outward
surface normal and#ll is the effective surface relaxivityd =
0 corresponds to the case of perfect reflection which is ma

t
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has shown that the multiple propagator scheme can be realipdtere
in a matrix form considerably simplifying numerical calcula-
tions @0). This certainly is a practical solution to the problem

at hand for an arbitrary gradient waveform. Can the theory
provide any simpler recipe, say, for a steady gradient? This
guestion has been addressed very recently and the answer is
yes. We have applied the projection operator method directly

to the Bloch—Torrey equation with(t) = 1 and obtained an denotes the transform. The general solution of the above equ
exact nonperturbative solution for the total magnetization inten is given by

closed matrix form in terms of the eigenmodes of the diffusion
propagator 48). The memory-function result is reproduced in
the limit of smallg. Any step-wise gradient pulse sequence can
be treated analytically in the same way since the evolution of
the magnetization density between the pulses is purely diffiisthereC, andC, are the constants determined by the boundar
sive and thus known. As an illustrative example, we haw®nditions,
considered diffusion on a line segment with perfectly reflecting
boundaries, both under a steady gradient and for the Stejskal—

m(x, s) = fm dte s'm(x, t) [15]

m(x, s) = Cyy; + Coy, + yiYo — ¥, Yy, [16]

— 51/2
Tanner pulse sequence. The purpose of this paper is to derive Y1 =27 15W), [17]
the corresponding formulas for other basic geometries, i.e., for y, = 22K 5(w), [18]
cylinders and spheres, as well as to include the surface relax-
ation. . . : .
with z = x — is/{ andw = §(i£)*?z*?, which represent two

linearly independent solutions of the corresponding homoge

DIRECT SOLUTION IN ONE DIMENSION neous equation, and

Before proceeding further with the matrix solution men-
tioned in the Introduction, we will show that in one dimension, Yi=3 f dx y m(x, 0), [19]
the exact solution of the Bloch—Torrey equation under a steady
gradient,fsg(t) = 1, can be obtained directly. Consider diffu-
sion on a line segment of lengtta2Practically, this means thatj = 1, 2. I, and K, denote the Bessel functions. For an
diffusion is restricted only in one dimension, such as by twequilibrium initial distribution,m(x, 0) = 3, we obtain
parallel planes. The spacing between the planes is denoted as

2a rather thana, in order to more directly compare with the W\ 43 5 4 5 w2

case of the cylinder and the sphere. The gradient is applied v, = %(ig)1’2r1<3) (2) l|:2(3; 337

along the direction normal to the planes. It is convenient to use [20]

dimensionless length and time, i.&.;— x/a andt — Dt/a’.

The only parameter of the problem is ndw= ga®/D, which _ 2\ [w) 23

is the ratio of the maximum difference between the preces- Y2 = 77(3'5)_1/2F_1(3> <2>

sional frequencies in the confining spage to the inverse of 124w

the characteristic diffusion timéd/a>. The Bloch-Torrey ] w

equation takes the form x 1F2<3’ 3'3’ 4) ~ (23, [21]
5 52 whereT'(v) is the gamma function ang~, is the hypergeo-
o m(x, t) = —iZxm(x, t) + e m(x, t), [13] Mmetric function. In order to calculate the signal, we mus

integrater( x, s) overx and then perform the inverse Laplace
transformation. The solution obtained appears to be more
academic interest than of any practical value since it involve
with x € [—1, 1]. The origin is at the center of the segmentather complicated functions of complex argument makin
After Laplace transformation over time Eq. [13] reduces to theaplace inversion a tricky numerical procedure which is hardly
ordinary differential equation advantageous over a straightforward numerical integration
the original partial differential equation using a standard finite

difference scheme. Besides, the approach itself is not genel

m’(x, s) — (s+ iZx)Mm(x, s) = —m(x, 0), [14] and applies only for this particular restricted diffusion problem
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MATRIX SOLUTION into Eq. [1], we obtain for the coefficients,

Steady Gradient a(t) = exd —t(A + igW)]- a(0), [28]
A general and systematic way to treat the spin-echo problem

in restricted geometries is to express the solution in terms\ghere

the Green’s function of the diffusion operator which contains

all the information about the confinement. Thereby we will just

reduce one problem to another, of course, but to a considerably a,(0) = J dru,(r)m(r, 0). [29]

simpler one. Methods of solution of the diffusion equation in

various geometries are well know#A9). Some geometries are

tractable exactly. In this sense, the spin-echo problem in its@fven the equilibrium initial condition, we can write for the

will be solved. We have been able to fulfill this task recentl§ignal,

for the case of a steady gradient by using the projection

operator technique4@). The method is described in full detail Msg(t) = UT-exd —t(A + igW)]- U, [30]

elsewhere for a physically different but mathematically equiv-

alent problem of diffusion-assisted reaction kineti§)( By or in the Laplace domain,

using the standard eigenmode expansion of the Green'’s func-

tion (49), Meo(S) =UT- O Xs) - U, [31]
» where
G(r, 1, t) = p(r) 2 up(r)uy(re ™, [22]
n=0
U, = j dru,(r)p(r). [32]
whereu,(r) denote the normalized eigenfunctions andthe

associated eigenvalues, we can write the final solution for the
total magnetization in the matrix form It should be noted that in an experiment the signal is usuall
normalized to its amplitude in the absence of the gradient, i.€

Msd(s) = [Q (9o [23] :
U exd—t(A +igW)]-U
where Esdlt) = UT-exp(—tA) - U [33]
Q(s) =sl + A +igW, [24] Inthe case of perfectly reflecting boundarieg(r) = 1, U, =
dnor Eso(t) = Mgg(t), and Eqg. [31] reduces to Eq. [23].
_ The matrix solution was, in fact, implicit in the work of

Wap = f dr Xp(r) Un(r) (1), [25] Robertson, who considered the spin-echo restricted-diffusic

problem under a steady gradient in one dimens#f). (How-
Ann = Annns [26] ever, instead of analyzing this solution, he reformulated th
_ _ _ _ _ problem in terms of the density matrix, applied the projectior
n,n" =0,1,...,%, | is the identity matrix, and,, is the operator method, performed the perturbation expansion |

Kronecker delta. The above solution assumes the equilibriggbwers of, made a local-time approximation, and arrived a
initial condition and the perfectly reflecting boundary condithe first-order truncated cumulant expansion in the end. W
tion. Originally, we presented it in a somewnhat different, albeffave seen that systematic application of the projection operat
completely equivalent, form obtained naturally from the opemethod to the Bloch-Torrey equation under a steady gradie
ator solution with all the operators projected onto the equilifleads back to the matrix solution; nothing else can be expecte
rium distribution. The above solution is exact although it contains matrices ¢
Equation [23] can be derived without projection operatorgfinite dimensions. In practice, we need to truncate the matr
just by expandingn(r, t) in terms of the known basis. Thisces at a certain finite dimensidd which should be chosen
procedure is familiar from quantum mechanics. By substitutinepending on the gradient strength. Convergence of the sol
the expansion tion in this respect is guaranteed by rapidly increasing eiger
values. This is very important. Fast convergence is the ke
% factor of the applicability of this method. We have shown that
m(r, t) = p(r) > a(t)u,(r) [27] at least in the case of one-dimensional restriction, only a fe
n=0 modes are required to attain excellent accuracy of the truncat
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matrix solution for experimentally typical values of the gradiwhere
ent strength48).
Numerically, after the matriceA andW are defined, one

can simpl luate th tri tial in E i y = 3(A1 — Ao), [41]
ply evaluate the matrix exponential in Eq. [30] to find
the signal. Analytically, the structure of the truncated matrix w=(y?— €?)¥2 [42]
solution can be more clearly demonstrated by Laplace-invert-
ing Eqg. [31]. The evolution of the total magnetization is then _ . .
described by a superposition &f exponentials in the time The normalized echo signal is given by
domain,
) E&Q(t) = th[COSHwt) + % sinNwt) |, [43]
Mee(t) = D) ¢ exp(st), [34]
i=1 This generalizes the memory-function result of Sheltraw an

Kenkre derived for perfectly reflecting boundari@8)( Inclu-
wheres; are the roots ofA(s) = 0, A(s) is the determinant of sion of additional eigenmodes does not essentially improve tf
Q(s). Note that Reg) < 0. The coefficients are given by memory-function solution. In contrast, the truncated matri

solution rapidly converges to the exact result as the number
uT-Q(s)-U modes is increased. _ _ _
;= TTA(s) [35] Previously, we used a slightly different terminology. By the
" N-mode approximation we meant thist lowest eigenmodes
are involvedbesideghe equilibrium mode. We feel that all the
modes should be included in the definition, particularly in view
of the fact that in the case of surface relaxation there is n

c

whereQ(s) is the adjoint matrix ofQ(s), and

A(s) equilibrium.
AS) = 36] 4
1

Stejskal-Tanner Pulse Sequence
In the case of perfectly reflecting boundaries, Now that we understand how to handle the steady gradie
case, we can focus on the experimentally more importar
C = MooSPA;(S), [37] Stejskal-Tanner pulse sequence. Our goal is the signal at t
end of the second pulse. It does not change after the gradient
where 1,,0(3) is the minor ofQ, o(s). switched off in the case of perfectly reflecting boundaries sinc

Thus7 the signa| relaxation modes are determined by tﬂ@ bulk relaxation is factored out. We will consider this case
roots of theNth-order p0|yn0mia|_ The two-mode approximaﬁrst and then discuss the effect of surface relaxation.
tion essentially coincides with the predictions of the memory- We have three consecutive stages. The magnetization de
function theory. Particularly simple expression is obtained f&ity at the end of one stage provides the initial condition for th
the basic geometries discussed below (parallel planes, cylindatosequent stage. Using the results of the preceding section
and sphere). As a consequence of the gradient linearity and €88 Write for the magnetization density after the first gradier
symmetry of these simple geometries, we hag® = p and Pulse,
Wy, = W,, = U; = 0. We also have

m(r, 8) = p(rju’(r)-e*" - U, [44]
Wo,1=Wio=p J dr xug(r)us(r), [38] whereV = A + igW and the asterisk denotes the comples
conjugate. The intermediate stage is purely diffusive and tht

so that

A(9) = (s+ A(s+ Ap) + €2 [39] mir. &) = f drG(r,r', A = &)m(r', 8)  [45]

_ T\ . a-(A=DA . 4—5V* .
wheree = gW, ., and finally for the echo signal, = p(rjui(r)-e € u.

M2(t) = U2e e "| coshwt) + vy sinhwt) | , [40] Given this initial condition, the magnetization density at the
w end of the second pulse is given by
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m(r, A+ 8)=p(r)uT(r)-e V- A 4. g=v".y, TRE Tre
[46] '

Finally, for the echo signal,
Mgi(A, 8) =UT-e V. @00 o=V y  [47]

and taking into account the fact thet, = &,, for perfectly
reflecting boundaries,

MST(Ai 8) _ [e_ﬁv ce- (A=A, e_av*]o o [48] FIG. 1. Schgmatlc representation of the Stejskal-Tanner pulsed-gradie
' spin-echo experiment.
In the long-time limit A& — ) this reduces to
UT‘ e—tlA . Q(Sl) . e—(A—B)A . Q*(O-k) . e—tzA . U

Cy = *
Mgr(e, 8) = Meg(8) Mia(8). [49] . Ay(s)A%(0v)

(53]

Due to the symmetry of the geometries we consider he - ;
o : e normalized echo signal,
%a(8) = Mgg(8), but this is not true in general. The truncategeln 'z 9

matrix solution can be handled either by numerically evaluat-
. . . . - MST(AI 81 t17 tZ)
ing the matrix exponentials in Eq. [48] or by expressing the Esr(A, 8, t, t,) = U [54]

signal in the form e 2oy
is experimentally observable.

(84008 The above general expressions are considerably simplifie
Msi(A, 8) = X cqe ' [50]  within the two-mode approximation for the basic geometrie:

N

ki=t discussed below. We obtain
where E&(A, 8) = [EE)]? + (/o) *sintP(wd)e >, [55]
NI (s (o) irrespective ot, andt,. This generalizes the memory-function
Cu= > w e (-9 [51] result of Sheltraw and Kenkre derived for perfectly reflecting
=0 A(s)Ak(aw) boundaries39). We can include more modes, if necessary, tc

attain any prescribed precision. It is also clear that we ca

and o, are the roots of\*(o) = 0. For the high symmetry consider any step-wise pulse sequence in the same way.

problems considered here, = s,.

In the case of relaxing walls we can still use Eq. [47] to
calculate the total magnetization provided that the firstgradieigt ctanaular Geometr
pulse comes immediately after the first RF pulse and the signaﬁ g y
is acquired immediately after the second gradient pulse, i.e.We now focus on the application of the above general resul
A + & = 27, Whererge is the RF pulse separation in the Hahito the simplest geometries with one-, two-, and three-dimer
spin-echo pulse sequence. Otherwise, we must take into sional restrictions. We begin with a one-dimensional problen
count the distortion of the equilibrium magnetization densityn which diffusion occurs between a pair of parallel planes ani
distribution before the first gradient pulse and the additiontiie gradient is applied along the direction normal to the plane:

MATRIX ELEMENTS

signal relaxation after the second. The result is In dimensionless form, this problem is described by Eq. [13]
We havep(x) = % and for the eigenmodes,
Ms(A, 8, ty, t
st v ty) A= a? [56]

— UT_e—tlA.e—av_e—(A—B)A.e—av*-e—tzA,U, [52] h
Un(X) = \Eﬁn<cos{an(x + )]+ sirfon(x + 1)]) :
wheret, = 27z — t; — A — & (see Fig. 1). Equation [50] can "

still be used but the coefficients are now given by [57]
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where

Ap

Jai+hh+1)

Bn= (58]

h = Ha/D, and«a, are positive roots of the equation

2ha,

a?—h?’

tan2a,) = [59]

numbered in increasing order,= 0, 1, ... ,%. As a result,
we have for the non-zero elements of Wematrix,

oz%j + a2, + 2h?

_Zﬁzjﬁzku ( 2

— 2 2
(] Q1)

W2j,2k+l = W2k+1,2j =

A. V. BARZYKIN

)\nm = aﬁma [67]
unm(r) = (2 - 8n,O) llanmJn(anmr)Coine)a [68]

whereJ, are the Bessel functions,
B :&(az +h2_n2)*l/2 [69]

nm ‘Jn(anm) nm '
and a,, are the roots of

anmJ:](anm)/Jn(anm) = _h1 [70]
numbered in increasing ordem, m = 0, 1,...,0. In the

limit of h — 0, the lowest root tends to zer@y,, = V2h —
0, corresponding to the equilibrium distributian,(r) = 1. It

[60] is convenient to keep double indices here. In practice, we ne
) to place all the elements in order of increasing..
wherej, k = 0, 1,...,. Note that even and odd roots The elements of th&/-matrix are given by
actually satisfy different equations,
an,n’m’ = Sn,n’tl(l + 6n,O + 6n’,O) 1/23ntn’m’
1
a+1COt iz 1) = —h. [62] XJ drr 23, (anmf) I (@pm ). [71]
0
It can be readily shown that in the limit &f — 0,
We could not find any simple analytical representation for th
a, = mn/2, [63] integral in Eq. [71]. Numerical integration is trivial, however.
Uy(X) = (2 — 8,0 Y2codan(x + 1)], [64] In the case of perfectly reflecting boundaries, we obtain for th

and the result for perfectly reflecting walls is reproduced,

Wy a1 = Woyr 5 = —7 21+ §j) V2

X[(j+k+3 72+ (j—k—37?%. [69]
We also need to define the vectdr
Uy = \2hayad + h(h+ 1)] V2 [66]

elements ofV which characterize the correlation between the
equilibrium mode and the higher eigenmodes,

Woo,1m = \J‘Ea i, —1) Y2 [72]

Only these correlation factors appear in the memory-functio
and the first-order truncated-cumulant-expansion solutions. F
nally, we have for the non-zero elementslgf

Uon = 2haon(agy + h?) 2 [73]

Spherical Geometry

Odd elements are zero. As mentioned in the preceding section,

U, = 8,, for perfectly reflecting boundaries.

Cylindrical Geometry

For a sphere of radiug, the gradient is applied along the
polar axis of the spherical polar coordinate frame. We use tf
same dimensionless parameters as those above. We h:
p(r) = 3/(4m) and for the eigenfunctions,

This is a two-dimensional problem handled in polar coordi-
nates,r and 6. The gradient is applied across the diameter.
Again, we use dimensionless distances~ r/a, time,t —
Dt/a’ and the surface relaxivith = Ha/D, wherea is the
radius of the cylinder. We have(r) = 1/m and for the where j, are the spherical Bessel functionB, are the
eigenmodes, Legendre polynomials, and

Unm(F) = \’%Bnmjn(anmr) P.(cos0), [74]
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) 2n+1 aln - 1 ———————
B~ h(h= 1) + aZp— nn + 1) jiam ) (a)
, . 5 0.5 4
The eigenvalues are given by, = a;. as above, but now
a,, are the roots of =
2 0o} ,'l / > o =
=y . m ’, N =
anm]n(anm)/ln(anm) = —h, [76] ‘ '
numbered in increasing order. Everything is very similar to the 05y ’
cylinder case. In the limit oh — 0, the lowest root tends to o
zero, ag, = V3h — 0, corresponding to the equilibrium 0 0.2 04 0.6 0.8 1
distribution,uqe(r) = 1. TheW-matrix elements are given by t
1
W 5 2(n.+ 1) ' ' ' '
= Onasl (204 1)(2n- + 3) - (b)
1 0.5 .
X Bntn’m’J drr3jn(anmr)jn’(an’m’r)v — ; l
~3 £ 7N
0 ~ ey S
@] 0k P Y ntmizd —
[77] o A
wheren_ = min(n, n’). Integration over in Eq. [77] can be 05} g
performed analytically but the results are too cumbersome to o
offer any practical advantage over the straightforward numer- 0 0.2 04 06 0S8 1
ical integration. We only present the elements responsible for t
the correlation between the equilibrium mode and the higher
eigenmodes in the case of perfectly reflecting walls, I
()
Woo,im = y2aim(aiy — 2) 2 [78] 05k ]
Only these correlation factors appear in the memory-function =
and the first-order truncated-cumulant-expansion solutions. Fi- 2 ol PR
nally, we have for the non-zero elementslbf & -
Uom = \Bhaoalady + h(h — 1)] V2 [79] -0.5 F .
1 N Il L 1 n 1

0 02 04 06 08 1
t

Now that the matriced\, W, andU are defined, the restis FIG. 2. Time evolution of the normalized magnetization under a stead
a technical matter. Since the effects of surface relaxation agredientEsq(t), for spins diffusing between planes (a), in a cylinder (b), and
finite pulse widths have been analyzed in sufficient detail in tffe2 sphere (c), witth = 0.5 and{ = 30 (dimensionless parameters defined
in the text). The curves correspond to tNemode truncated matrix solution

literature 729, 32, 35-4)) here we shall only demonstrate '\ "~ otted)N = 3 (dashed)N = 6 (solid), and the short-gradient-

the convergence of the tru_ncated matrix SOIUt'_On for a ty_pmﬂklse approximation (dash—dotted). Circles represent the numerical solution
set of parameter values. Figure 2 shows the time evolutiontsé Bloch-Torrey equation in the one-dimensional case.

the normalized total magnetization under a steady gradient,

Es(t), in different geometries fon = 0.5 and{ = 30. This

is a rather large value df(i.e., the gradient strength), resultingguishable. The numerical solution of the Bloch—Torrey equa
in strong oscillations. Note that the Gaussian phase appratkdon obtained via a standard discretization procedure in th
mation is completely inadequate heB9(48. The two-mode one-dimensional case is also shown for comparison. The agre
approximation describes well the initial stage of the kinetiament is perfect.

but fails at long times. The three-mode approximation is muchFigure 3 illustrates the normalized echo signal for the
better and folN > 5 the curves become practically indistin-Stejskal-Tanner pulse sequené&g;(A, 8), as a function of

NUMERICAL RESULTS
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one-dimensional restricted diffusion, convergence of the trur
cated matrix solution is achieved within five modes. The nu
merical solution is also presented in this case and the agre
ment is again perfect. For cylinders and spheres, more mod
are required but still folN > 7 the curves are practically
indistinguishable within the range gfdisplayed. The conver-
gence is better for smaller surface relaxivity and for large
pulse separation. We are talking about the absolute conve
gence here. Noting the log scale in Fig. 3 we can see th
deviations of theN-mode predictions from the exact results
will be within the experimental error even fof = 3, partic-
ularly in view of the fact that we are dealing with the normal-
ized echo signal. In fact, experimentalists are sometimes s:
isfied with the accuracy of the Gaussian phase approximatic
(27), which is always worse than even that of the two-mode
approximation.

The short-gradient-pulse approximation is also shown i
Fig. 3 for comparison. The corresponding expressions can |
found in the literatureZ9). Here we only present the result for
the planes, which, we believe, is simpler than previously re
ported, albeit completely equivalent,

Eg(8,6)

Ey(a0)

Msi(4A, q)

1 [sinda, +q) + (—=1)"sinda, — q)]* .
"2 Eo 1+ (—1)"sind2a,) e

(80]

where sinck) = sin(x)/x.

Now we show in Fig. 4 the comparison of the predictions of
our matrix solution with the simulations by Linse anddso
man @6). The parameters chosen correspond to those used
their Figs. 4(c), 5(a), and 6(a), namel* = DA/(2a)* = 0.2
and y*g* = g(2a)*/D = 200. Theagreement is excellent.
Note that in their definition of the dimensionless parameters tr
diameter, 2, is used instead of the radiues, as in this work.

q /271' Also, these authors performed their analysis of the dependen

of the echo attenuation anby keeping the gradient amplitude,
FIG. 3. Normalized echo signal as a function of the amplitude of the anoy pIng 9 P

reduced wavevectay/ 2 for the Stejskal—Tanner pulse sequenEeya, 9@ constant and varying the durat'on_Of the gra@ent p@se,
5), for spins diffusing between planes (a), in a cylinder (b), and in a sphefd1€ results shown in Fig. 3 were obtained following a differen

(c), withh = 0.5,86 = 0.3, A = 1, andt, = t, = 0 (dimensionless scheme, whergy is varied while 6 is kept constant. Both
parameters defined in the text). The curves correspond toNtneode approaches are used in practice.

truncated matrix solution wittN = 2 (dotted),N = 3 (dashed)N = 8 . . . R -
(solid), and the short-gradient-pulse approximation (dash—dotted). CirclesFma”y’ the effect of distortion of the equilibrium magneti

represent the numerical solution of the Bloch-Torrey equation in tration density distribution before the first gradient pulse an
one-dimensional case. the additional signal relaxation after the second is illustrated i
Fig.5forh=1,8 = 0.1,A = 0.5, andt; = t, = 0.2 in
the one-dimensional case. Although the effect appears to |
g = ¢£§ in different geometries fon = 0.5,8 = 0.3, andA = rather weak, it will be stronger for asymmetric geometries
1. The two-mode approximation works well for smglland Thus, to avoid complications, the experiment should be de
can be used to determine the apparent diffusion coefficient. Bigned in such a way that andt, are as small as possible.

E,.(a,0)
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lg T T T T T 3 N-1
; M(N7) = ST(qo) - [] [R-A(gp]-Slay),  [82]
j=1
_ 107 3 where
UD’\ r ]
)
< ] sn<q>=f dr p(r)uy(r)exp(—ig - 1), [83]
0 A 055 l i I 1.5 An,n’(q) :J drp(r)un(r)un’(r)exd_iq'r)i [84]
2
q/ 4 R = exp(—71A). [85]

FIG. 4. Comparison of the matrix solution (lines) with the simulation
results (symbols) of Linse and 8erman 86) for the normalized echo signal
as a function of the amplitude of the reduced wavevedi®= for the
Stejskal-Tanner pulse sequenEg;(4, 8), for spins diffusing between planes
(squares), in a cylinder (circles), and in a sphere (triangles) with reflecting Mgsa(NT) = ST(q) ‘[R- A(q)]’\‘*1 - S(q), [86]
walls (h = 0), forA = 0.8 and{ = 25 (corresponding ta* = 0.2 andy* g*
= 200 in the notations of Linse and @&erman).

In the case of a steady gradieftt) = 1, one obtains

whereq = gr. Let us now take the limiN — o« with N7 =
t. We have

MULTIPLE PROPAGATOR VERSUS STEP-WISE .
GRADIENT APPROACH im S(q) = U, [87]

As mentioned in the Introduction, the problem of spin dif- .
fusion in restricted geometries under an arbitrary gradieﬁt' A@) =1 — & t(A + igW) and thus
waveform can be handled within the multiple propagator i N1 .
scheme of Caprihan, Wang, and Fukushir@2) (It is impor- 'L'_rfl [R-A(@)]™" = exd —t(A +igW)], [88]
tant to establish the relationship between this general method
and our matrlx. solut.|on. for a ste.p-W|se gradient. As we Sh"’\lfl\}here the matriced andW are defined by Egs. [32] and [25],
see, this relationship is very simple although the two ap- . ,

: . respectively. Finally,
proaches are based on seemingly different grounds.

The idea of the multiple propagator approach originates
from the short-gradient-pulse approximation. The gradient
waveform is represented by a successionddtinction im-
pulses,

Mso(t) = UT- exd —t(A + igW)] - U; [89]

fo(t) = 7 > ¢8(t — j7). [81]

j=0

It may be convenient to discretize the waveform amplitutjes
as well, but it is not necessary here and we can simplgpst
f(j7). Thus, the translational motion of spins is subdivided into
a sequence oN time intervals T during which the space
evolution of the magnetization density is described by the
diffusion propagatorG(r, r’, t), while all spin phase evolu-

EST(A’ 6t t2)

tion takes place at well-defined times at the boundaries of those q /27r
intervals with corresponding phase factors expf; - r),
whereq; = ‘q j| = grc,. FIG. 5. Normalized echo signal as a function of the amplitude of the

. . ._ .. reduced wavevectay/ 2 for the Stejskal-Tanner pulse sequeriEgy(A, J,
Callaghan has showrdQ) that such a time dISCretlzatlOnt t,), for spins diffusing between planes. The curves correspond to th

procedure leads to a closed matrix form of solution for the totéhowing sets of parameterst = 1, 8 = 0.1,A = 0.5, andt, = t, = 0
magnetization at the end of the pulse sequence, (dotted), ort; = t, = 0.2 (solid).
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i.e., our matrix solution is reproduced from Callaghan’s matrix
solution in the continuum limit where the number of sharp
gradient impulses in the discrete waveform becomes effec-
tively infinite.

On the other hand, if we assume that the true short-gradient-
pulse limit can be reached, at least theoretically, the multiple
propagator approach becomes exact while our matrix solution
requires effectively an infinite number of diffusion eigenmodes
to converge. Let us illustrate this point by considering a singleFIG. 6. Step-wise discretization procedure for an arbitrary gradient wave
8-function pulse. The corresponding expression for the tofalm
magnetization is

Fig. 6. As a result, we obtain for the total magnetization at th

Ms(q) = f drp(r)exp(—iq-r). [90] end of the pulse sequence,
N
In the short-gradient-pulse limit our matrix solution reduces to M(N7) = UT-[] exd —7(A + igcW)]-U.  [95]
=1
M;s(g) = UT- exp(—igW) - U. [91]

Thus, any waveform may be handled in a simple and gener

Equivalence of the two expressions can be proved by expaf@ghion in terms of just three matricds, A, andW.
ing exp(=igW) in Eq. [91] in a Taylor series, using the
orthogonality condition, CONCLUDING REMARKS

We have addressed the problem of spin echo in restricte
geometries under a step-wise gradient pulse sequence. It |
been shown that the evolution of the magnetization densit
during each pulse can be described in a simple matrix forr
where the matrices are defined in terms of the eigenmodes

and then collecting the terms back into an exponential forr{rl].e diffusion operator in the given geometry with appropriate

Analytically, we need an infinite number of eigenmodes o . .
reproduce Eq. [90]. The accuracy of the truncated mat:f}oundary conditions (perfectly reflecting or relaxing walls).

S . 4 . Rithough matrices of infinite dimensions are involved, the
solution is determined by the amplitudeof the gradient. In 9 L . : ey
other words. the two methods mav have their advantaces fr(r):an be truncated at a certain finite dimension to attain ar

’ Y 9 scribed precision. Convergence of the truncated matrix s

a practical viewpoint but theoretically they are equivalent, as,. . g . .
ution is guaranteed by rapidly increasing eigenvalues. Onl
they should be. 9 y rapidly g €lg y

. . few modes are often sufficient to attain excellent accuracy fc

Finally, let us show how to handle an arbitrary waveform : IIv tvbical values of the aradient strenath. We hav

within the step-wise gradient approach. In analogy to thexp_erl(r;er_]ta Iy yp vtical 9 ithi hg : d

multiple propagator scheme, we discretize the waveform, erived simple ana ytica expressions wit m_t € two-m_o_ ‘

approximation in the case of relaxing boundaries generalizin

previously reported memory-function results. The matrix ele

N ments for three basic restricted geometries, namely, a lir

fo) =7 2 ¢ [0(t—(j —17) —6(t—jn] [93] segment, a cylinder, and a sphere, have been calculated and

=1 behavior of the total magnetization in these cases has be

analyzed for the steady gradient as a function of time and fc

Now step functions are used insteadéefunctions. The am- the Stejskal-Tanner pulse sequence as a function of the a

plitudesc; are chosen in such a way that the area ufigléy is  plitude of the reduced wavevector. The agreement of the m

equal to the area undéft) for eachr step, i.e., trix solution with the results of numerical simulations is per-

fect. We have also established the relationship between o

1 (i 1 matrix solution and the multiple propagator approach devise

C = TJ dt f(t) = > [f((j —1)7) +f(jm)]. [94] to handle arbitrary gradient waveforms by decomposing th

(i-Dr waveform into a succession of sha#pf(inction) impulses. A

step-wise gradient discretization procedure that offers an alte

The approximate equality holds for smooth gradient waveative simple method for dealing with generalized gradien
forms and smalt. The discretization procedure is illustrated irwaveforms has been suggested.

p(r) 2 u(Nun(r’) = 8(r —r’), [92]

n=0
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